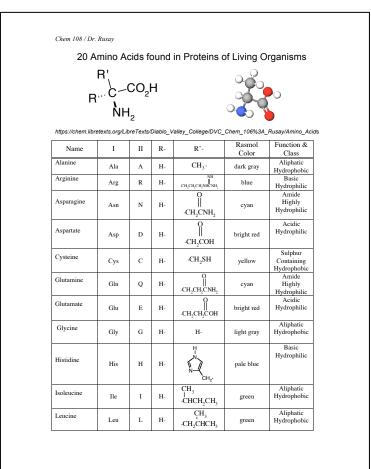
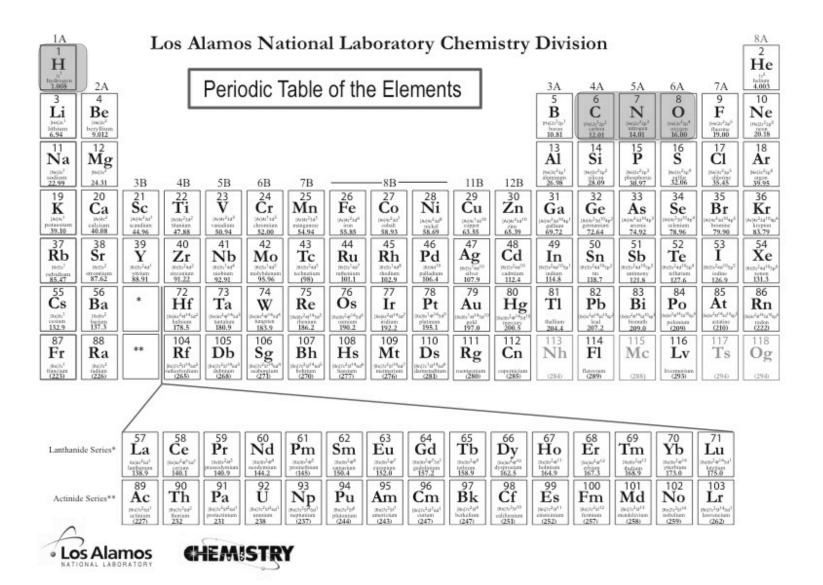
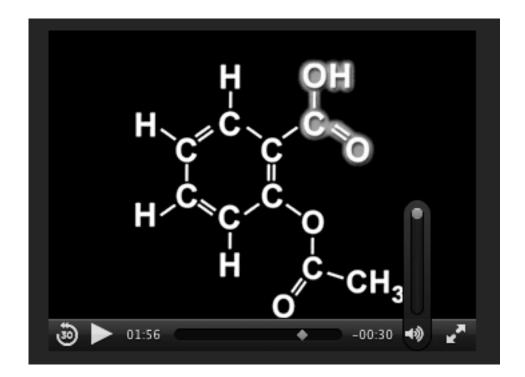
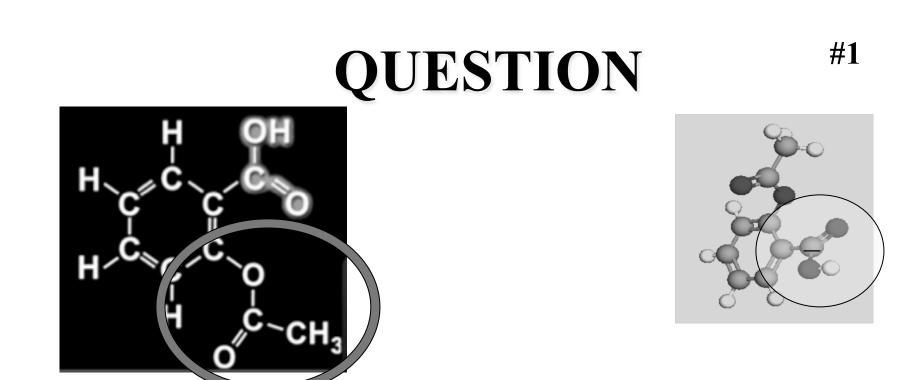
Organic Molecules Tutorial Functional Groups


Dr. Ron Rusay

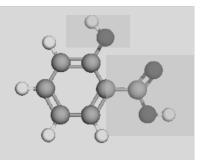

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.

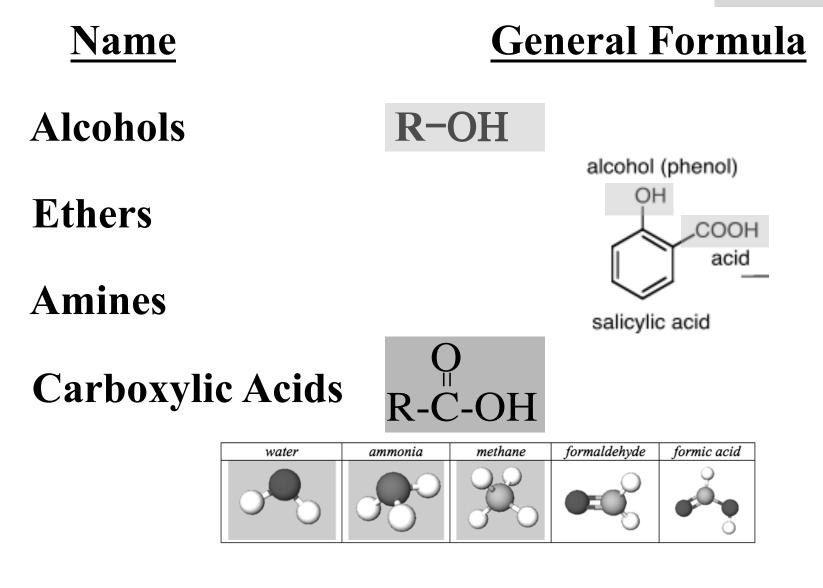
Functional Groups & Amino Acids


	ter, ammonia, methane, formaldehyde and formic
and biological molecules. Simply rep	ling blocks to construct the vast majority of organic place a hydrogen from each of any two molecules if joining three molecules replace 4 hydrogens with 2
water ammonia	methane formaldehyde formic acid
<u>Name</u>	General Formula
Alcohols	R-OH
Ethers	R-O-R'
Amines	R-NH ₂
Carboxylic Acids	О R-C-OH
Aldehydes	о R-C-H
Ketones	Q R-C-R'
Carboxylic Acids	Q R-C-OH
Esters	Q R-C-OR'
Amides	Q Q R-C-N R'
	R'


Elemental building blocks for all organic molecules

Synthesis of a Non-steroid anti-inflammatory drug Aspirin


http://chemconnections.org/general/movies/Representations.MOV



One of aspirin's functions, an ester, is circled in blue. What is the highlighted yellow function?: A.Alcohol B.Ether http://chemconnections.org/general/chem108/ o-chem%20tutorial/Screen%20Shot %202018-12-07%20at %203.49.36%20PM.png D.Aldehyde E.Carboxylic Acid

Salicylic Acid

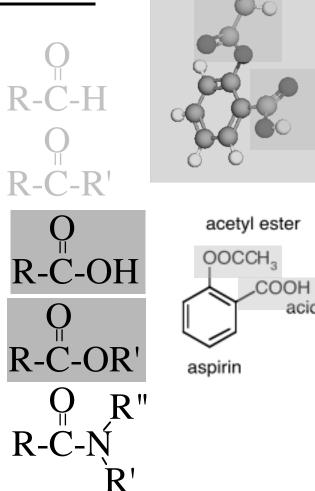
Common Functional Groups

Aspirin

Common Functional Groups

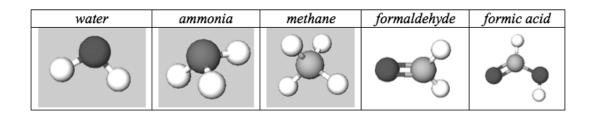
Name

General Formula


Aldehydes

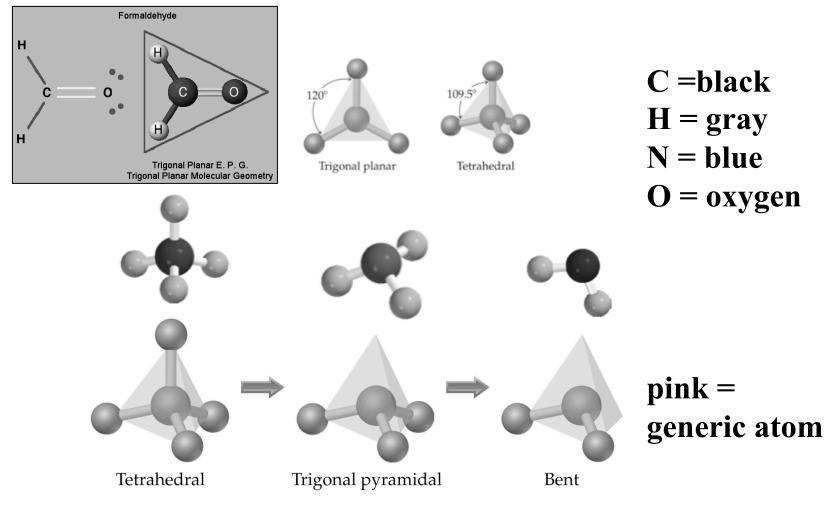
Ketones

Carboxylic Acids


Esters

Amides

acid

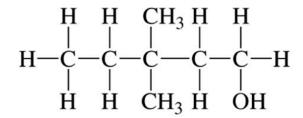

Organic Molecules

Shapes, Functions & Structural Analogies Water, Ammonia, Methane

Molecular Models for C, H, N, O

Fundamental repeating shapes found in every biological molecule

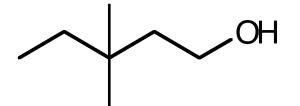
Representing Organic Molecules


http://chemconnections.org/general/movies/Representations.MOV

Representing Organic Molecules Common Formulas & Drawings

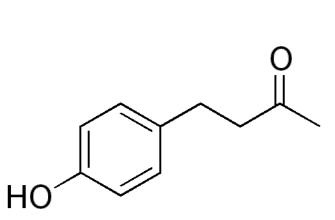
Molecular formula: (

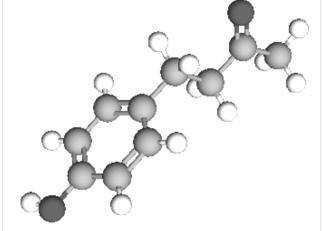
 $C_7H_{16}O$


Empirical Formula: C₇H₁₆O

Condensed Structure: CH₃CH₂C(CH₃)₂CH₂CH₂OH

or $CH_3CH_2CCH_2CH_2OH$

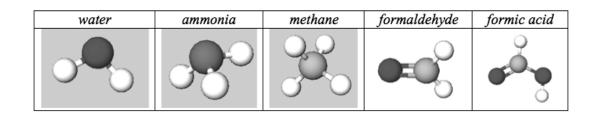

Bond-Line Structure:



QUESTION

A compound that smells like fresh raspberries, the following structure, C₂H₂O₂, matches its calculated molar mass which is 164 g/mol.

A) TRUEB) FALSE



http://chemconnections.org/general/chem108/ochem%20tutorial/Screen%20Shot %202018-12-07%20at%203.50.06%20PM.png

Organic Molecules *Common Functional Groups*

<u>Name</u>		General Formula							
Alcohols	R'- or R-	R-OH							
Ethers	represents any generic carbon atom bonded in	R-O-R'							
Amines	the functional group	R-NH ₂							
Carboxylic	O R-C-OH								

Organic Molecules

Common Functional Groups

Name

General Formula

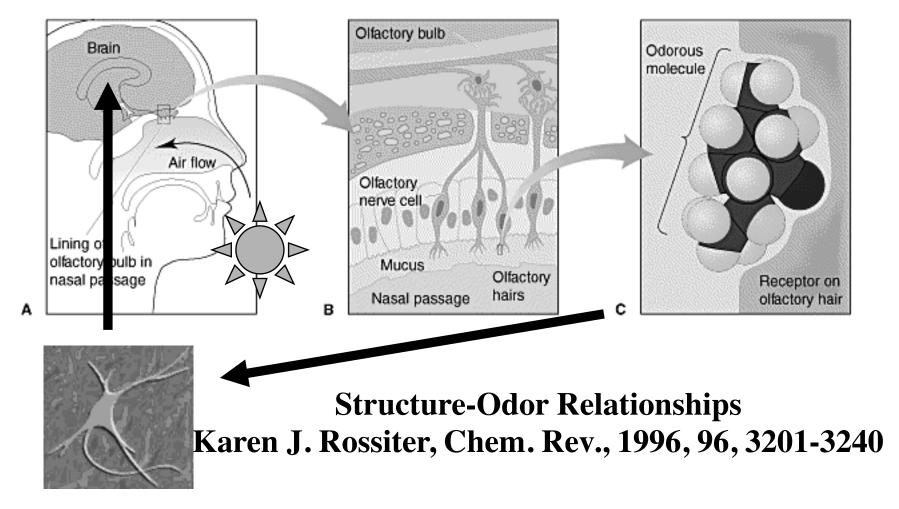
Aldehydes

Ketones

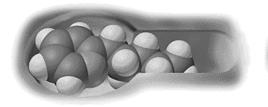
Carboxylic Acids

Esters

Amides

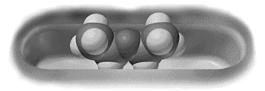

R'- or Rrepresents any generic carbon atom bonded in the functional group R-C-H R-C-R' R-C-OH R-C-OR' **R**" R-C-N

AlcoholR-OHEther $R-O-R'$ Amine $R-NH_2$ Aldehyde O R-C-H $R-C-H$ Ketone $R-C-R'$ Carboxylic Acid O Ester $R-C-OR'$ Amide $R-C-OR'$		STION n(s) in the molecule	#3 H0	
Ether $R-O-R'$ Amine $R-NH_2$ Aldehyde O $R-C-H$ Ketone $R-C-R'$ Carboxylic Acid O $R-C-OH$ $R-C-OR'$ Ester $R-C-OR'$ $O-R"$				
Amine $R-NH_2$ Aldehyde O Aldehyde O Ketone $R-C-H$ Carboxylic Acid O Ester $R-C-OR'$ O $R-C-OR'$		Alcohol	R-OH	
Aldehyde R-C-H Ketone R-C-R' Carboxylic Acid O Ester R-C-OR'		Ether	R-O-R'	
Ketone R-C-R' Carboxylic Acid O Ester R-C-OR'		Amine	R-NH ₂	
Ketone R-C-R' Carboxylic Acid O Ester R-C-OR'		Aldehyde	O R-C-H	
Ester R-C-OR' O R'		Ketone		
Ester R-C-OR' O R"		Carboxylic Acid		
		Ester		and the second
		Amide	R-C-N R'	


http://chemconnections.org/general/chem108/o-chem%20tutorial/ Screen%20Shot%202018-12-07%20at%203.54.07%20PM.png

Detecting stuff we cannot see: the Sense of Smell Models, Theories & Interactions

http://chemconnections.org/organic/chem226/Labs/Smell/smell-links.html


Historical view of a few smell receptors.

Camphor-like

4 October 2004

Ethereal

The Nobel Assembly at Karolinska Institutet has today decided to award

The Nobel Prize in Physiology or Medicine for 2004

jointly to

Richard Axel and Linda B. Buck

for their discoveries of

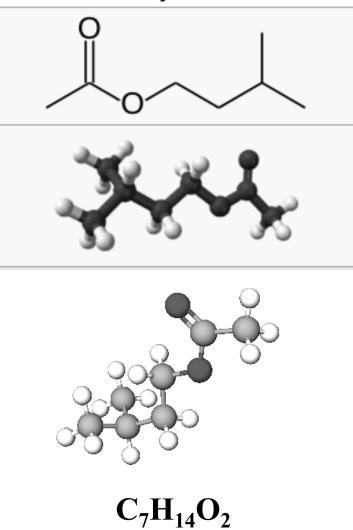
"odorant receptors and the organization of the olfactory system"

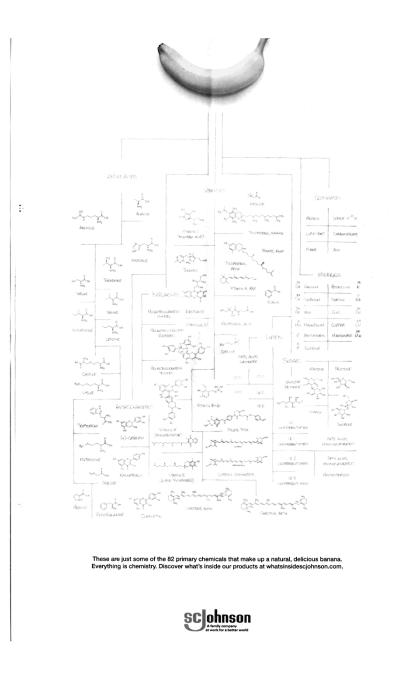
http://chemconnections.org/organic/chem226/Labs/Smell/ChemComm.html

Organic Functions & Smell Receptors.

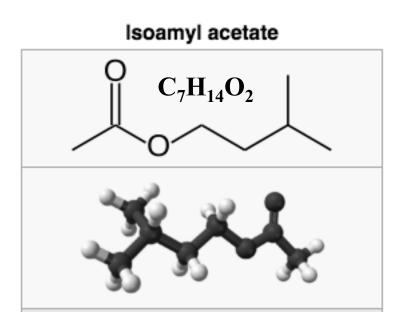
Table of organic compounds and their smells

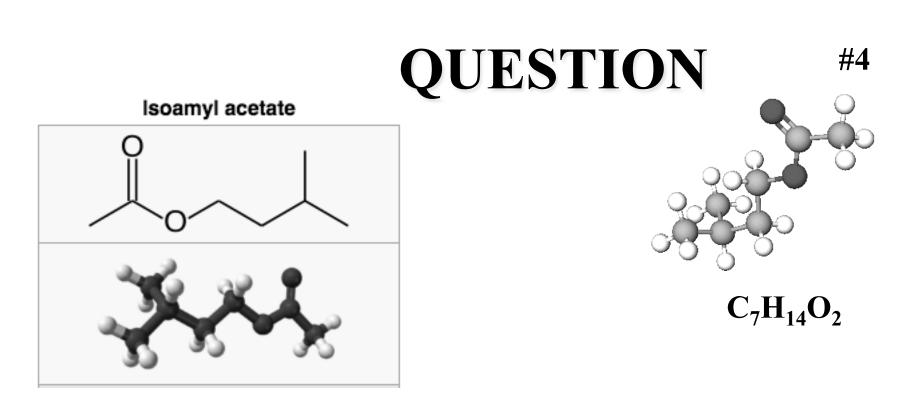
Organic Chemistry


	ALK	ANES	ALKENES	ALCO	HOLS		ALDE	HYDES		KETC	ONES	CARBOXY	LIC ACIDS	ł	ALOALKANE	S	THIOLS	AMI	NES	NITRILES	LACTONES
	-ane	cyclo -ane	-ene	-anol	-an-2-ol	-anal	2-methyl -anal	3-(4-t-butylphenyl) -anal	-enal	-an-2-one	methyl -an-2-one	-anoic acid	-enoic acid	chloro -ane	bromo -ane	iodo -ane	-anethiol	-anamine	diamino -ane	-anenitrile	-anolide
meth- 1 carbon	none	doesn't exist	carbene is too unstable to smell	VODKA	doesn't exist		doesn't exist	doesn't exist	doesn't exist	doesn't exist	doesn't exist	PUNGENT & PENETRATING	doesn't exist	TOXIC & MILDLY SWEET	LIKE	SWEET, ACRID	£0		?		doesn't exist
eth- 2 carbons	none	doesn't exist	0	ABSOLUT		FRUITY, ETHEREAL	doesn't exist			doesn't exist		VINEGAR		MILDLY	SWEET, ACRID	ETHEREAL	SKUNK			A ETHEREAL	doesn't exist
prop- 3 carbons	none		0	ABSOLUT	RUBBING ALCOHOL	IRRITATING GREEN COFFEE	WET	ATTRACTS	BURNED	NAIL VARNISH REMOVER	doesn't exist	SLIGHTLY RANCID	SHARP	MILDLY	SWEET	SHARP, UNIQUE	100			A ETHEREAL	none
but- 4 carbons	none	-	00	C	Safel's. WINE		SP	LILY		BUTTERSCOTCH	LIKE NAIL VARNISH REMOVER	RANCID	BROWN	SHARP	PLEASANT, SWEET	SHARP, UNIQUE	butanethici skunk skunk butan-stekel naturi par colorat		DEAD ANIMALS		G
pent- 5 carbons	STARTING FLUID		0		(S)- and (R)- enantiomers	PUNGENT NUTS & CHOCOLATE	FRESHLY CUT GRASS	?	۲	•	MINT (4-methyl-)	DISGUSTING		MILD	PLEASANT, SWEET	- CA	ROASTED		DEAD ANIMALS	\$	HERBAL
hex- 6 carbons	STARTING FLUID	SWEET	00	FRESHLY CUT GRASS	-	FRESHLY CUT GRASS	FRESHLY CUT GRASS	?	\smile	ATTRACTS	Camethyle	GOATS	ARMENTS (WHEN 3- METHYLATED)		SLIGHTLY SWEET	?	BURNED		ROTTING FISH		10 etc
benzene different naming system is used	n/a	n/a.	Benzene	SICKENINGLY SWEET AND TARRY Phenol	doesn't exist	SP	**	?	doesn't exist	doesn't exist	Acetophenone	BALSAMIC	doesn't exist	SP		•	de 🕑	Aniline	TOXIC, AROMATIC	Benzonitrile	doesn't exist
hept- 7 carbons		•	0	FRESHLY CUT GRASS	(S)- and (R)- enantiomers	STRONG, FRUITY COGNAC	(2.6-dimethyl- heptapal)	?	ALMOND	-	BAD (6-methyl-)	RANCID	APARITS (WHEN 3- METHYLATED)	none	SLIGHTLY	none				se	CARAMEL 6
oct- 8 carbons	PETRO	•		PENETRATING, SWEET	(S)- and (R)- enantiomers	STRONG, CITRUS- LIKE	?	?	£0	-2-one petol -3-one het buter	?	ALL .	ARMPITS	none		SEAWEED				se	
non- 9 carbons	DIESED	0	0	CITRUS	So and a second	ATTRACTS	Cor	?	OLD PEOPLE	MILK	?	RANCID	ARMPITS	none	none	none				\triangle	000
dec- 10 carbons	JET FUEL	•	00	FLOWERS	?	BUCKWHEAT	E)	?	ATORA	?	?	Rit	ARMPITS	none	none	none				set .	
undec- 11 carbons	ALSO ANT PANIC PHEROMONE	?	0	CITRUS FLOWERS	?	MAKES SPERM UNABLE TO FIND THE EGG	KUMQUATS	?	Nin.	ALGERIAN OIL OF RUE	?	WAXY	PUNGENT & PENETRATING	UNIQUE & UNPLEASANT	none	MOUSE				\triangle	
dodec- 12 carbons		MUSTY ,	0	FLOWERS	?	Č)	?	?	-0	?	?	BAY OIL	FATTY	UNIQUE & UNPLEASANT	none	?				se	<u>(</u>)
tridec- 13 carbons	STINK-BUG	UNIQUE; FOUND IN ROSES	-		?	GRAPEFRUIT	ROASTED	?	?	WAXY	?	18	?	UNIQUE & UNPLEASANT	none	?			none	\triangle	ANGELICA
tetradec- 14 carbons	KAPOK BUSH FLOWERS	none	-		?	Č)	?	?	?	?	?	WAX & NUTMEG	?		none	?			none	se	CEDAR
pentadec- 15 carbons	TAMARIND	?	-		?	FRESH	?	?	CORIANDER	CELERY	?	BIOMARKER FOR DAIRY CONSUMPTION (No smell)	?	UNIQUE & UNPLEASANT	none	?			none	\wedge	MUSK

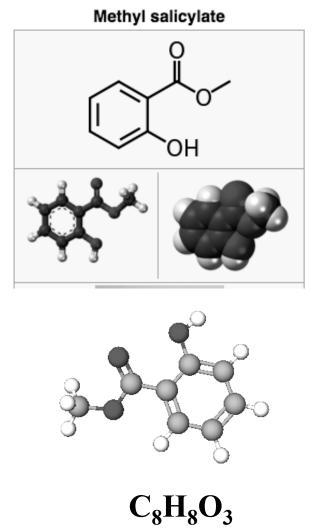

Version 1.2 Produced by James at jameskennedymonash.wordpress.com. Visit website for more infographics. Free to use!

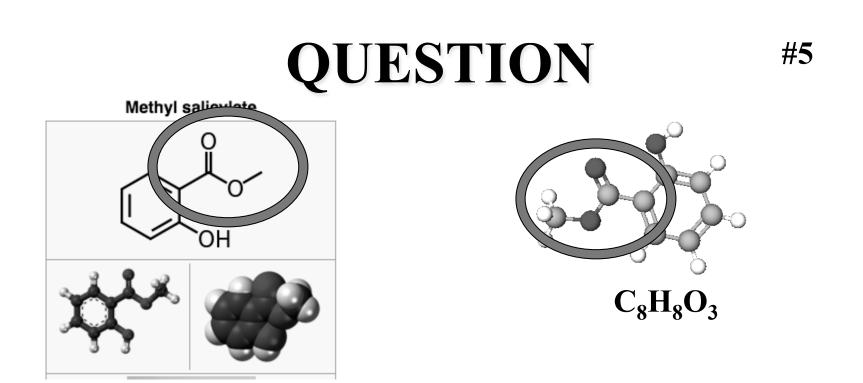
One molecule, one function: One Smell Receptor


Isoamyl acetate, also known as isopentyl acetate, is formed from isoamyl alcohol and acetic acid. It is a colorless liquid that is only slightly soluble in water, but very soluble in most organic solvents. Isoamyl acetate has a strong odor which is also described as similar to both banana and pear.[3] Banana oil may be either pure isoamyl acetate, or flavorings that are mixtures of isoamyl acetate, amyl acetate, and other flavors.


Isoamyl acetate

One molecule among 82 primary chemicals found in bananas:

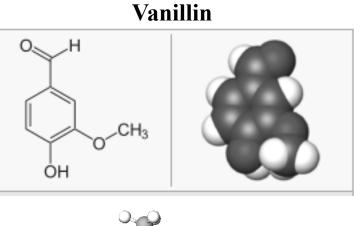


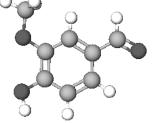


The function in isoamyl acetate's structure is a(n): A.Alcohol B.Aldehyde C.Ketone D.Ester E.Carboxylic Acid

One molecule, two functions: One Smell Receptor

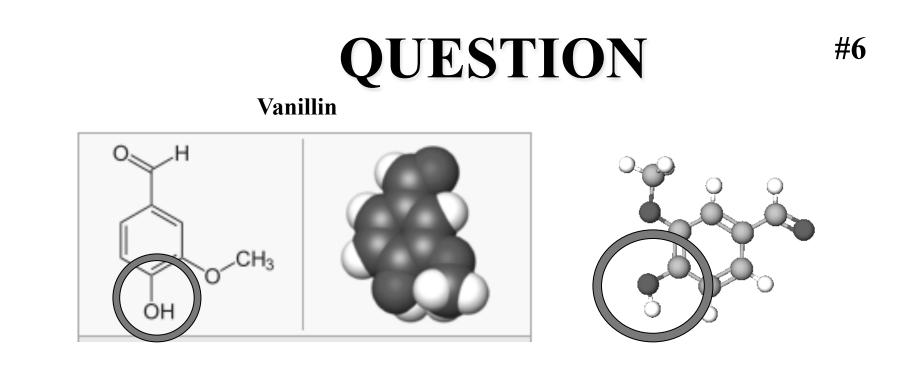
Methyl salicylate (oil of wintergreen or wintergreen oil) is naturally produced by many species of plants, particularly wintergreens. It is also synthetically produced, used as a fragrance, in foods and beverages, and in liniments.

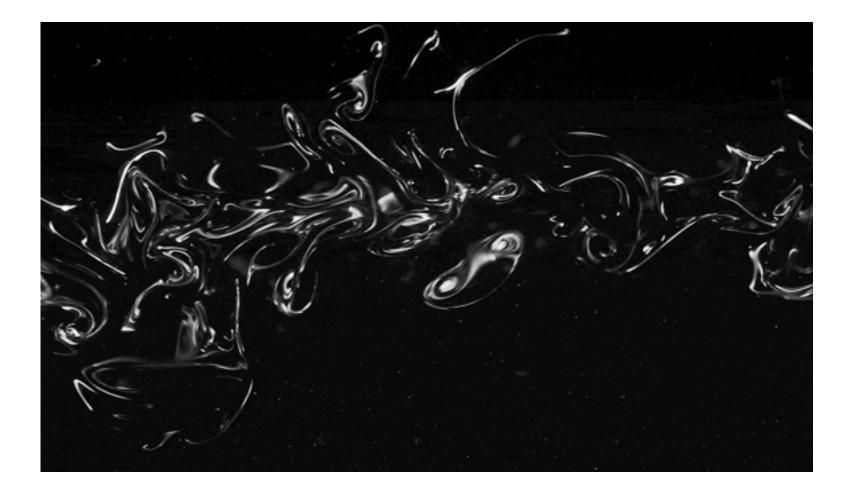




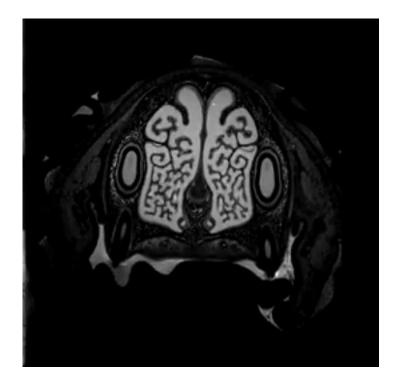
One of the functions, an ester, is circled. What is the other function?: A.Alcohol B.Ether C.Ketone D.Aldehyde E.Carboxylic Acid

One molecule, three functions: One Smell Receptor


An extract of the cured, full-grown, unripe fruit of an orchid produces a popular flavoring. The natural extract sells for \sim \$1500/kg versus \sim \$20/kg for the synthetic version. The structure of the compound that is responsible for the smell/flavor is shown to the right. The Guinness Book of World Records once listed this compound as having the lowest smell detection limit of all chemicals (2 x 10^{-11} g per 1,000 cm^3 of air).


Bonus:

The space (volume) of the Oakland Coliseum Arena, aka Oracle Arena, is approximately 90,000,000 ft³. If 1.00g of the compound were released at center court, and was completely and evenly dispersed throughout the building, would you smell it sitting in sec. 204, row H, seat 121? Show your calculation. (1 ft³ = 0.0283 m³)

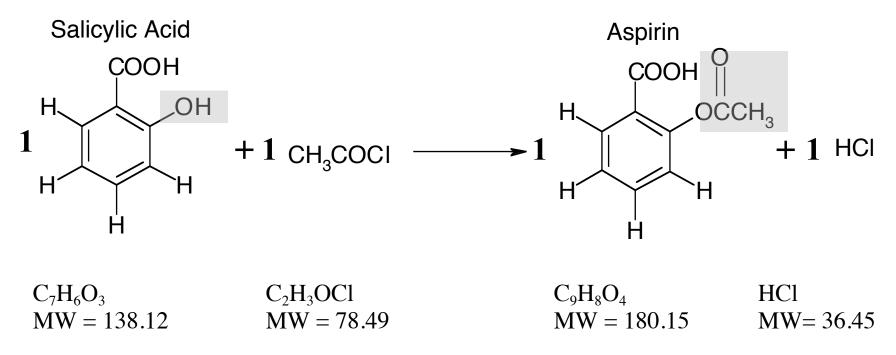

One of the functions, an alcohol, is circled. What are the other two functions?: A.Aldehyde + Ketone B.Carboxylic Acid + Ester C.Ketone + Ether D.Aldehyde + Ether E.Carboxylic Acid + Aldehyde

What a smell looks like

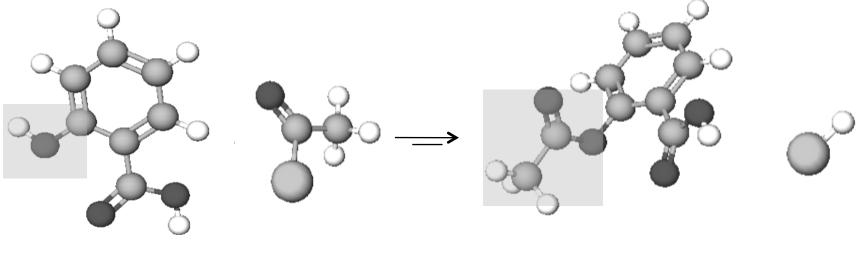
https://www.youtube.com/watch?v=58U52lDTuvk&list=PLgawtcOBBjr9I-NDoUX-HmTQr_VN465G2&index=3

Inside the extraordinary nose of a search-and-rescue dog

https://www.youtube.com/watch?v=FLH36ML8IEU

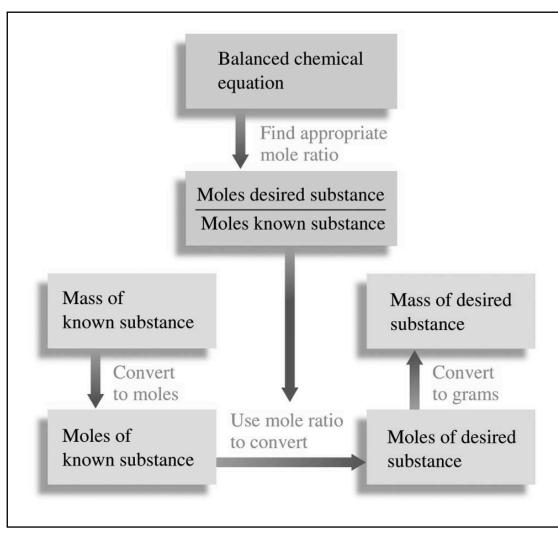

Dogs Can Smell Cancer - Secret Life of Dogs - BBC

https://www.youtube.com/watch?v=e0UK6kkS0_M

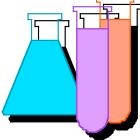

Mass Calculations: Reactants ←→Products

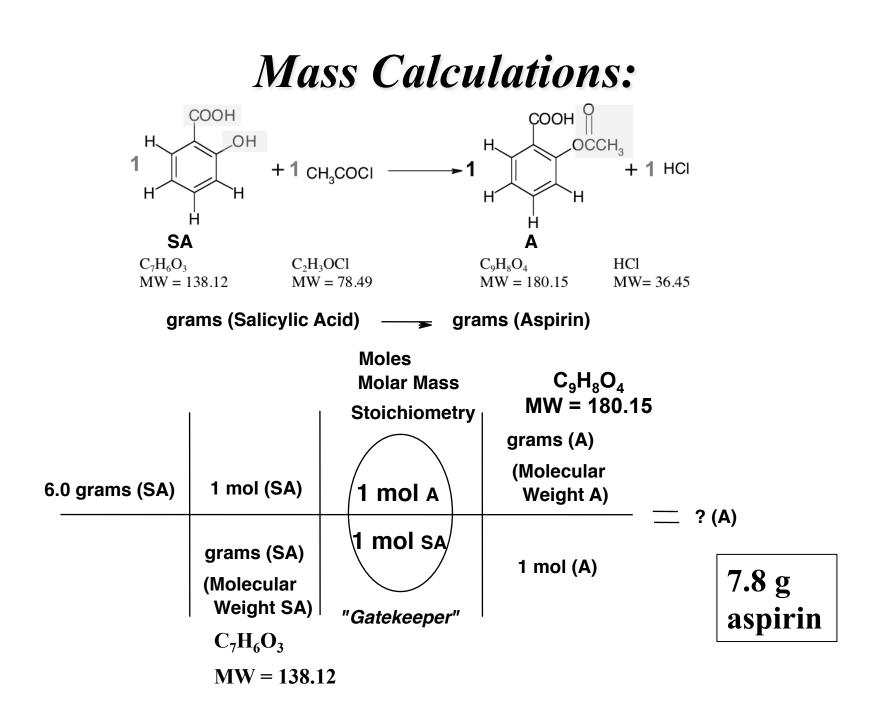
- How many grams of aspirin are theoretically produced from 6.0 g of salicylic acid with an excess of acetyl chloride, C₂H₃OCl?
- Balanced Equation:

Mass Calculations: Reactant → Product


- How many grams of aspirin are theoretically produced from 6.0 g of salicylic acid with an excess of acetyl chloride, C₂H₃OCl?
- Balanced Equation:

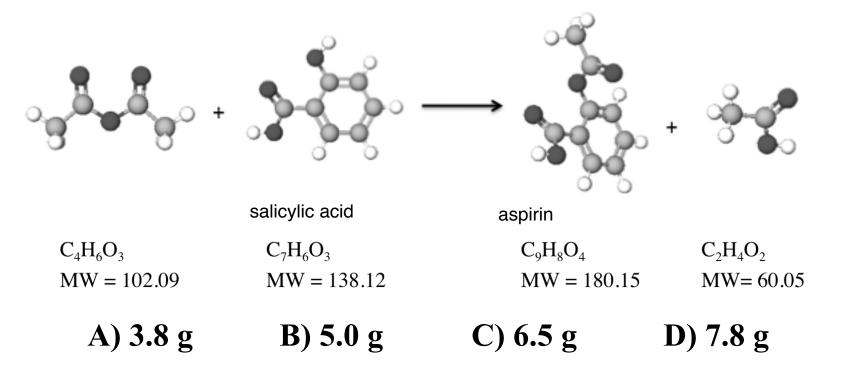
 $C_7H_6O_3$ C_2H_3OCl MW = 138.12 MW = 78.49


 $C_9H_8O_4$ HCl MW = 180.15 MW = 36.45


Mass Calculations: Reactants ←→Products

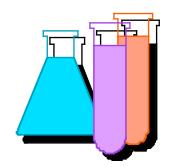
Theoretical (Yield) Mass Calculations Reactant → Product

grams (Reactant) grams (Product) Moles **Molar Mass Stoichiometry** grams (P) 1 mol (R) grams (R) ? mol (P) 🚞 ? grams (P) ? mol (R) grams (R) 1 mol (P) (Divide) (Multiply) by Molar "Gatekeepers" by Molar from Mass (R) Mass (P) **Balanced** reaction

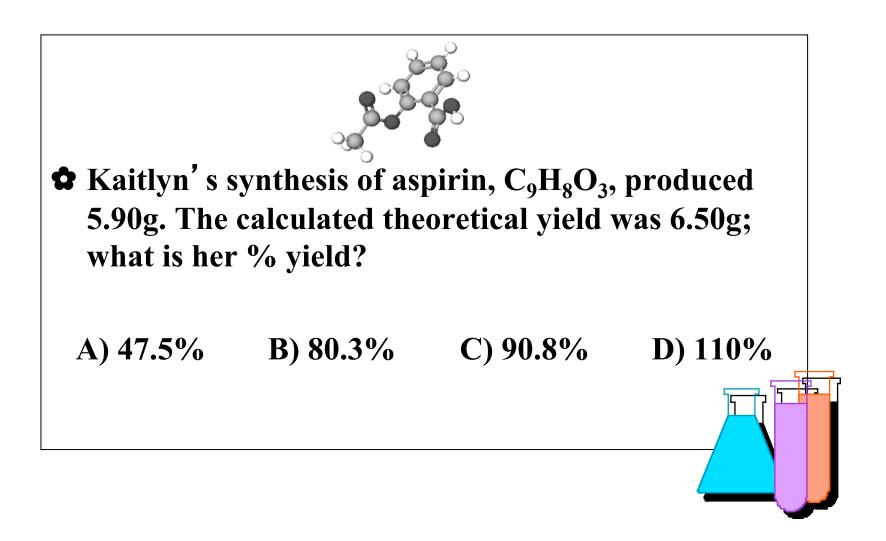


QUESTION

http://chemconnections.org/general/ chem108/o-chem%20tutorial/Screen %20Shot%202018-12-07%20at %203.55.53%20PM.png


#7

- How many grams of aspirin can be theoretically produced from 5.0 g of salicylic acid reacting with an excess of acetic anhydride, C₄H₆O₃?
- Balanced Equation:


Percent Yield

- In synthesis as in any experiment, it is very difficult and at most times impossible to be perfect. Therefore the actual yield (g) is measured and compared to the theoretical calculated yield (g). This is the percent yield:
- ✿ % Yield = actual (g) / theoretical (g) x 100

QUESTION

http://chemconnections.org/general/chem108/ o-chem%20tutorial/Screen%20Shot %202018-12-07%20at%203.56.16%20PM.png

